

| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 1/15 |

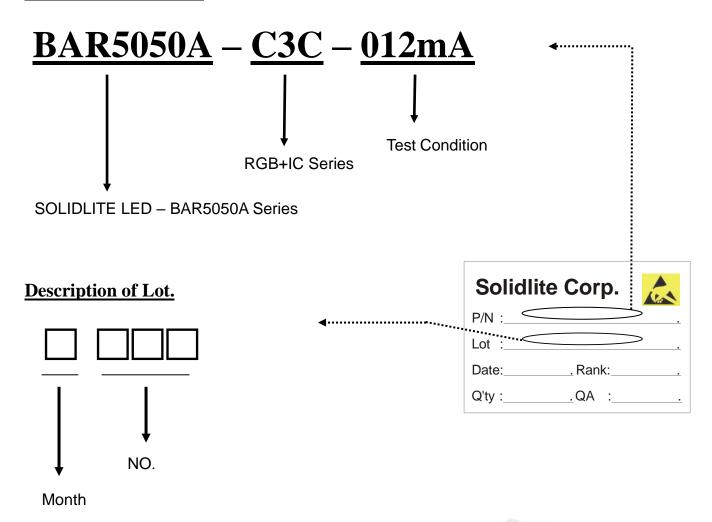
# **APPROVAL SHEET**

Part No:

BAR5050A-C3C-012mA

NOTE:

## **Green Part**


|           | MAKER |       | CUST    | OMER     |
|-----------|-------|-------|---------|----------|
| SOLIDLITE |       |       |         |          |
| R&D       | QA    | Sales | Checked | Approved |
|           |       |       |         |          |

| Prepared   | Prepared Checked |            |
|------------|------------------|------------|
| Rachel Lee | Sky Lin          | Kenneth Wu |



| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 2/15 |

### **Description of P/N No.**





5050 built-in IC multi-color Intelligent control LED light source 5.0x5.4x1.6mm SMD LED Diode



| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 3/15 |

#### 1.Description

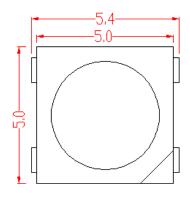
BAR5050A-C3C-012mA is an intelligent controlled LED light source that integrates a control circuit and a light-emitting circuit. Its appearance is the same as a 5050 SMD LED, and each element is a pixel. The pixel contains an intelligent digital interface data latch signal shaping amplifier drive circuit, a power supply voltage regulator circuit, a built-in constant current circuit, a high-precision RC oscillator, and the output drive adopts patented PWM technology to effectively ensure the color consistency of the pixel light.

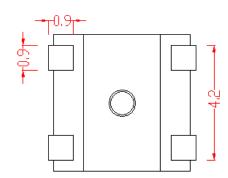
The data protocol adopts a unipolar return-to-zero code communication method. After the pixel is power-on reset, the DIN terminal accepts the data transmitted from the controller. The first 24bit data sent is extracted by the first pixel and sent to the pixel point the internal data latch, the remaining data is reshaped and amplified by the internal shaping processing circuit and then forwarded to the next cascaded pixel through the D0 port. After each pixel is transmitted, the signal is reduced by 24 bits.

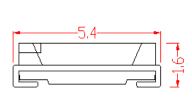
LED has the advantages of low voltage drive, environmental protection and energy saving, high brightness, large scattering angle, good consistency, ultra-low power, and ultra-long life. Integrating the control circuit on the LED makes the circuit simpler, smaller in size, and easier to install.

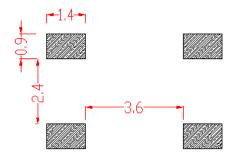
### 2. Applications

- LED full-color luminous character string light, LED full-color module, LED symphony soft and hard light bar, LED guardrail tube, LED appearance/scene lighting.
- LED point light source, LED pixel screen, LED special-shaped screen, various electronic products, electrical equipment marquee.


#### 3. Features


- LED has integrated high-quality external control single-wire serial cascaded constant current IC.
- ➤ The control circuit and chip are integrated in the SMD 5050 components to form a complete external control pixel, with uniform effect and high consistency.
- ➤ Built-in data shaping circuit, any pixel receives the signal after waveform shaping and then output, to ensure that the wire waveform distortion will not accumulate.
- Built-in power-on reset and power-off reset circuit, light is not on when power on by default.
- Gray adjustment circuit (256 levels of gray can be adjusted).
- Special processing for red light drive, more balanced color matching.
- Single-wire data transmission, unlimited cascading.
- Reshaping and forwarding enhanced technology, the transmission distance between two points exceeds 10M.
- ➤ The data transmission frequency can reach 800Kbps. When the refresh rate is 30 frames per second, the number of cascades is not less than 1024 points.





| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 4/15 |

## 4. Package Dimensions

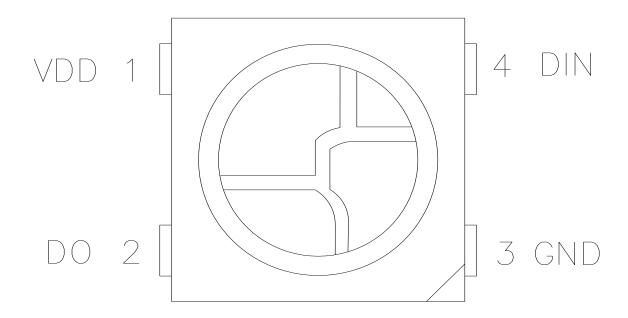








Recommended size of solder pad


#### Note:

- a. All dimensioning units are mm.
- b. Unless otherwise specified, the tolerance of all marked dimensions is ±0.2mm.
- c. Package size: 5.0x5.4x1.6mm.



| Drawing No.        | *Rev. | Date       | Page |  |
|--------------------|-------|------------|------|--|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 5/15 |  |

### 5. Pin function



| Pin No | Symbol | Pin name    | Function description            |
|--------|--------|-------------|---------------------------------|
| 1      | VDD    | power       | chip power supply pin           |
| 2      | D0     | data output | control data signal output      |
| 3      | GND    | ground      | signal and power connect ground |
| 4      | DIN    | data input  | control data signal input       |

## 6. Electro-optical characteristics at Ta= $25^{\circ}$ C

| Item                | Syn | nbol | Mix | Тур | Max  | Unit | Conditions |
|---------------------|-----|------|-----|-----|------|------|------------|
| Dominant            |     | G    | 520 | -   | 525  |      |            |
| Dominant wavelength | λd  | R    | 620 | -   | 625  | nm   | IF=12mA    |
|                     |     | В    | 465 | -   | 470  |      |            |
| Luncia              |     | G    | 800 | -   | 1200 |      |            |
| Luminous intensity  | IV  | R    | 200 | -   | 400  | mcd  | IF=12mA    |
|                     |     | В    | 150 | -   | 300  |      |            |

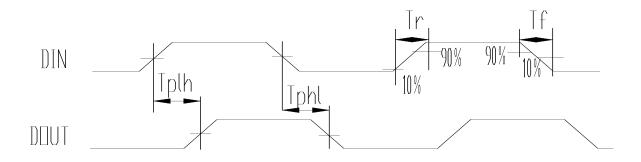


| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 6/15 |

## 7. Absolute maximum ratings at Ta=25°C

| Parameter                  | Symbol           | Range      | Unit                    |
|----------------------------|------------------|------------|-------------------------|
| Logic power supply voltage | $V_{DD}$         | 3.5 ~ 7.5  | V                       |
| Logic input voltage        | Vı               | -0.5 ~ 5.5 | V                       |
| Operating temperature      | $T_{opt}$        | -40 ~ 85   | $^{\circ}$ C            |
| Storage temperature        | T <sub>stg</sub> | -40 ~ 120  | $^{\circ}\! \mathbb{C}$ |
| ESD withstand voltage      | V <sub>ESD</sub> | 4K         | V                       |

## 8. IC Electric Spec


| Parameter name                      | Symbol           | Min    | Typical | Max    | Unit | Test conditions |
|-------------------------------------|------------------|--------|---------|--------|------|-----------------|
| R/G/B output port withstand voltage | $V_{ds}$         | 8.5    | 9       | 9.5    | V    |                 |
| R/G/B output drive current          | Io               | 9.6    | 12      | 14.4   | mA   |                 |
| High level input voltage            | V <sub>IH</sub>  | 0.7Vdd | 0.9Vdd  | VDD    | V    |                 |
| Low-level input voltage             | V <sub>IL</sub>  | 0      | 0.1Vdd  | 0.3VDD | V    |                 |
| DO source current capability        | I <sub>DOH</sub> |        | 15      |        | mA   |                 |
| DO source current capability        | I <sub>DOL</sub> |        | 30      |        | mA   |                 |
| PWM frequency                       | F <sub>PWM</sub> | 3      | 4       | 5      | KHZ  |                 |
| Static power                        | I <sub>DD</sub>  | 0.6    | 0.8     | 1      | mA   |                 |

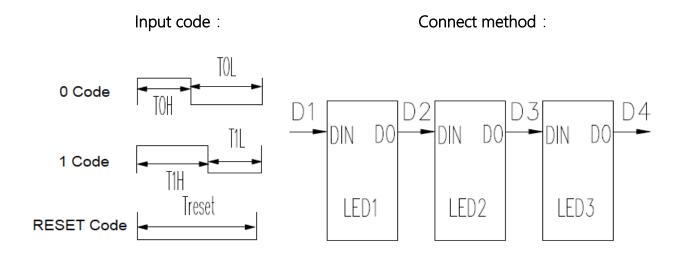


| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 7/15 |

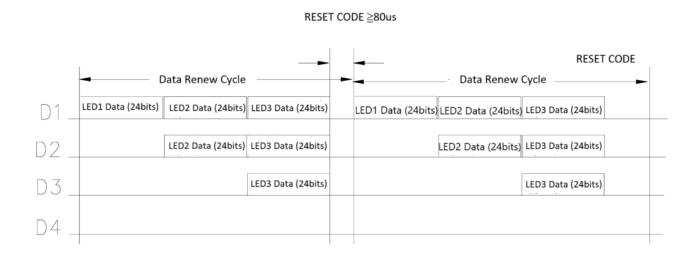
## 9. Dynamic parameter

| Parameter name          | Symbol           | Min | Typical | Max  | Unit | Test conditions |
|-------------------------|------------------|-----|---------|------|------|-----------------|
| Data transfer rate      | F <sub>DIN</sub> |     | 800     | 1100 | KHZ  | -               |
| Transmission delay time | $T_{PLZ}$        |     | -1      | 200  | ns   | DIN→DO          |
| Output current          | T <sub>r</sub>   |     | 1       | 400  | ns   | Vds=1.5V        |
| conversion time         | T <sub>f</sub>   |     |         | 400  | ns   | Io=12mA         |




### 10. The data transmission time

| T Symbol | Code                       | Min | Typical | Max | Unit |
|----------|----------------------------|-----|---------|-----|------|
| ТОН      | 0 code, high level time    | 245 | 295     | 345 | ns   |
| TOL      | 0 code, low level time     | 545 | 595     | 645 | ns   |
| T1H      | 1 code, high level time    | 545 | 595     | 645 | ns   |
| T1L      | 1 code, low level time     | 245 | 295     | 345 | ns   |
| Trst     | Reset code, low level time | 80  |         |     | us   |




| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 8/15 |

## 11. Temporal waveform figure

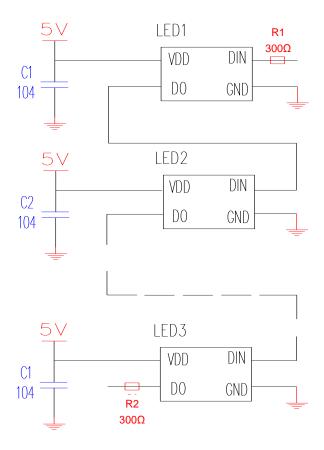


### 12. Mode of data transmission



Note: D1 is the data sent by the MCU, and D2, D3, and D4 are the data that the cascade circuit automatically reshapes and forwards.



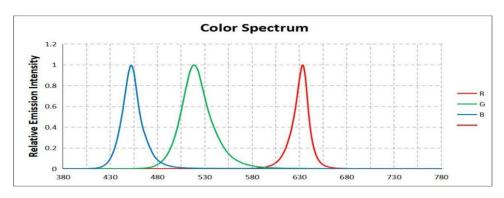

| Drawing No.        | *Rev. | Date       | Page |
|--------------------|-------|------------|------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 9/15 |

### 13. Mode of data transmission

| G | G | G | G | G | G | G | G | R | R | R | R | R | R | R | R | 5.7 | <b>D</b> 0 | D  | D.4 | D.0 | D.0 | D. | D.0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|------------|----|-----|-----|-----|----|-----|
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | В/  | B6         | B5 | В4  | В3  | В2  | B1 | B0  |

Note: The high bit is sent first, and the data is sent in the order of GRB (G7→G6......B0)

## 14. Typical application circuit

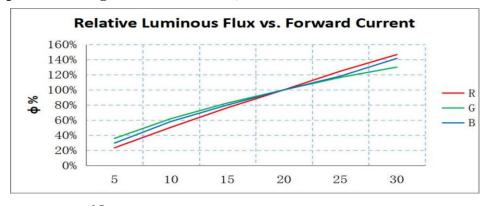




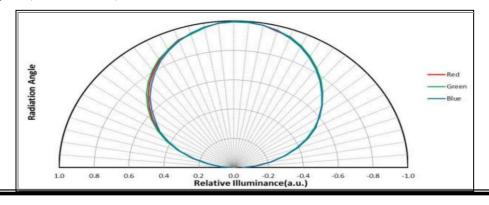


| Drawing No.        | *Rev. | Date       | Page  |
|--------------------|-------|------------|-------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 10/15 |

### 15. Typical optical characteristics curves


■ Spectrogram , Ta=25°C



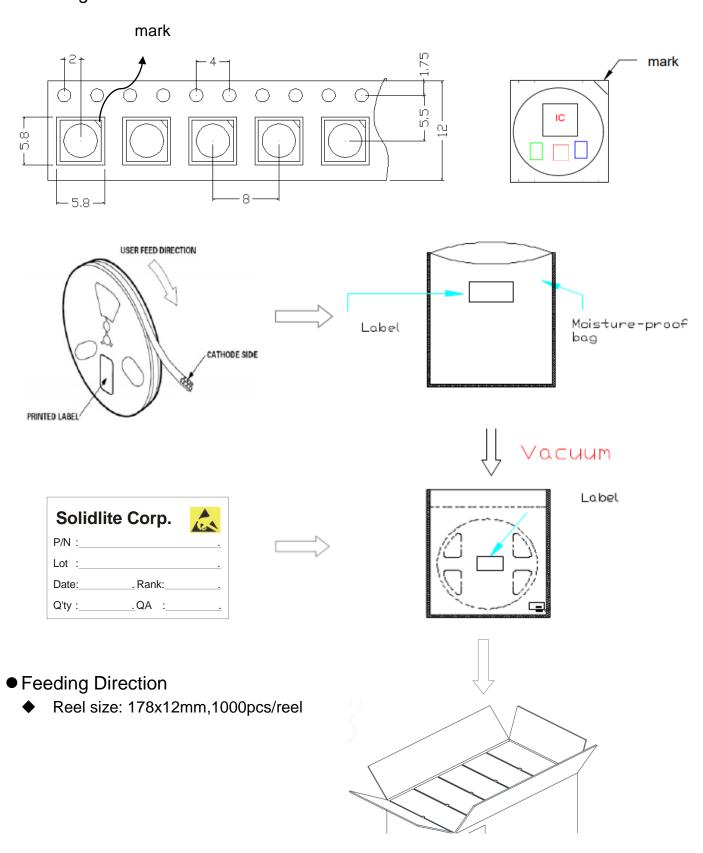

■ Relationship between voltage and current, Ta=25°C



■ Relationship between brightness and current, Ta=25 °C



■ Angle diagram, Ta=25 °C , If=12mA






| Drawing No.        | *Rev. | Date       | Page  |
|--------------------|-------|------------|-------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 11/15 |

## 16. Packaging Specifications

Feeding Direction

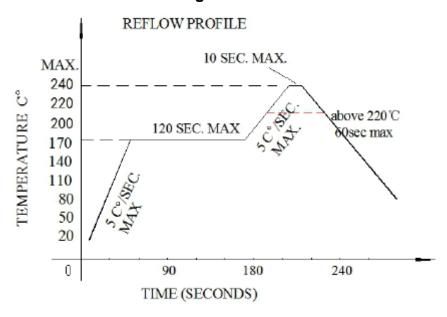




| Drawing No.        | *Rev. | Date       | Page  |
|--------------------|-------|------------|-------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 12/15 |

## 17. Reliability

### TEST ITEMS AND RESULTS


| Item | Test Item                       | Ref. Standard | Test Conditions                                       | Note     | Conclusion |
|------|---------------------------------|---------------|-------------------------------------------------------|----------|------------|
| 1    | Reflow<br>Soldering             | JESD22-B106   | Tsld=240°C,10sec                                      | 3times   | 0/22       |
| 2    | Temperature Cycle               | JESD22-A104   | -20°C 30min<br>↑↓ 15min<br>120°C 30min                | 200cycle | 0/22       |
| 3    | Thermal Shock                   | JESD22-A106   | -40°C 15min  ↑↓ 15sec 125°C 15min                     | 200cycle | 0/22       |
| 4    | High<br>Temperature<br>Storage  | JESD22-A103   | T <sub>a</sub> =100°C                                 | 1000hrs  | 0/22       |
| 5    | Low Temperature<br>Storage      | JESD22-A119   | $T_a$ =-40°C                                          | 1000hrs  | 0/22       |
| 6    | Power<br>temperature<br>Cycling | JESD22-A105   | On5min-40°C>15min  ↑↓ ↑↓  <15min  Off 5min100°C>15min | 200cycle | 0/22       |
| 7    | Life Test                       | JESD22-A108   | Ta=25°C<br>IF=12mA                                    | 1000hrs  | 0/22       |
| 8    | High Humidity<br>Heat Life Test | JESD22-A101   | 60°CRH=90%<br>IF=12mA                                 | 1000hrs  | 0/22       |

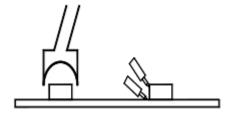


| Drawing No.        | *Rev. | Date       | Page  |
|--------------------|-------|------------|-------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 13/15 |

### 18. Reflow profile

### **SMD Reflow Soldering Instructions**




- a. Reflow soldering should not be done more than two times.
- b. When soldering, do not put stress on the LEDs during heating.

#### **Soldering iron**

- a. Keep the temperature under 300 °C withing 3 seconds when soldering.
- b. The hand soldering should be done only one time.

#### Rework

- a. The rework should be done within 5 seconds under 240°C.
- b. Do not touch silicone encapsulation while taking the LED.
- c. Twin-head type is preferred.





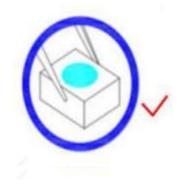
| Drawing No.        | *Rev. | Date       | Page  |
|--------------------|-------|------------|-------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 14/15 |

#### 19. CAUTIONS

#### Note for use

In order to ensure that IC lamp beads are used in SMT patch reflow welding and in the use of the process yield and stability of the product, the following procedures are specified after many tests.

- a. Sample evaluation: Because this product is a built-in IC product, the overall process is different from conventional RGB products, so the customer side needs to carry out all-round verification during the sample evaluation to ensure the matching performance of the product.
- b. Incoming material inspection: ensure the vacuum packing is intact and there is no vacuum leakage. If there is vacuum leakage, please confirm whether the reflow welding is abnormal. If it is abnormal, please return to the factory for high-temperature dehumidification.
- c. Use: Please confirm the first piece before the formal SMT. According to the principle of one pack and one package, the lamp bead should not be exposed to air for more than 4 hours. The lamp bead should be reflow welded within 2 hours after the SMT is finished.
- d. Maintenance: material should be completed within 4 hours and domestic demand after reflow soldering test and repair the lamp bead, such as more than 4 hours need to repair the lamp plate temperature above 65 °C dehumidification 12 hours to repair work, and repair the lamp bead also must carry on the low temperature above 65 °C dehumidification 12 hours, use prohibited in the process of maintenance with temperature over 240 °C heating machine repair, prohibit the whole plate placed in the heating stage repair, follow the principle of bad which return which measuring.
- e. Warm prompt: the whole process special considerations for light bead before use vacuum packing, dehumidification, SMT placement time and workshop of temperature and humidity control, product maintenance lamp plate if bare at room temperature environment for a long time need to dehumidification, light board and light bead light beads as LED electronic products, need to pay attention to moisture in spring and summer, autumn and winter anti-static, product quality is enterprise's life, to the quality strives for the survival, to the quality strives for the development is our consistent aim. Also, in order to ensure the quality of the client, please strictly refer to the above recommendations.




| Drawing No.        | *Rev. | Date       | Page  |
|--------------------|-------|------------|-------|
| BAR5050A-C3C-012mA | Α     | 2023/12/10 | 15/15 |

### **Definition of moisture resistance**

| Moisture resistance level verification |                            |             |                        |           |                        |           |  |  |  |
|----------------------------------------|----------------------------|-------------|------------------------|-----------|------------------------|-----------|--|--|--|
| Moisture                               | Life span after un packing |             | Verification condition |           |                        |           |  |  |  |
| resistance                             |                            |             | Standard conditions    |           | Accelerated conditions |           |  |  |  |
| level                                  | Time                       | Condition   | Time                   | Condition | Time                   | Condition |  |  |  |
| LEVEL1                                 | Unlimited                  | ≦30°C/85%RH | 168+5/-0H              | 85℃/85%RH | /                      | 1         |  |  |  |
| LEVEL2                                 | 1year                      | ≦30°C/60%RH | 168+5/-0H              | 85℃/60%RH | /                      | 1         |  |  |  |
| LEVEL2a                                | 4weeks                     | ≦30°C/60%RH | 696+5/-0H              | 30℃/60%RH | 120+5/-0H              | 60℃/60%RH |  |  |  |
| LEVEL3                                 | 168hours                   | ≦30℃/60%RH  | 192+5/-0H              | 30℃/60%RH | 40+5/-0H               | 60℃/60%RH |  |  |  |
| LEVEL4                                 | 72hours                    | ≦30℃/60%RH  | 96+5/-0H               | 30℃/60%RH | 20+5/-0H               | 60℃/60%RH |  |  |  |
| LEVEL5                                 | 48hours                    | ≦30°C/60%RH | 72+5/-0H               | 30℃/60%RH | 15+5/-0H               | 60℃/60%RH |  |  |  |
| LEVEL5a                                | 24hours                    | ≤30°C/60%RH | 48+5/-0H               | 30℃/60%RH | 10+5/-0H               | 60℃/60%RH |  |  |  |
| LEVEL6                                 | Take out<br>And use        | ≦30°C/60%RH | Take out and use       | 30℃/60%RH | /                      | /         |  |  |  |

The LED is encapsulated with silicone, therefore, the top surface of the LED is soft. The pressure to the top surface will influence the reliability of the LEDs. Please do not touch silicone encapsulation while taking the LED.





